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Abstract
We have observed damped longitudinal cosmological-scale oscillations in a unique
model-independent plot of scale factor against lookback time for Type Ia supernovae
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data. We found several first-derivative relative maxima/minima spanning the range of
reported transition redshifts. These extrema comprise two full cycles with a period of
approximately 0.15 Hubble times (  km s  Mpc ). This period corresponds to a
fundamental frequency of approximately seven cycles over the Hubble time.
Transition-z values quoted in the literature generally fall near these minima and may
explain the reported wide spread up to the predicted ΛCDM value of approximately z =
0.77. We also observe second and third harmonics of the fundamental. The scale factor
data is analyzed several different ways, including smoothing, Fourier transform, and
autocorrelation. We propose a cosmological scalar field harmonic oscillator model for
the observation. On this timescale, for a quantum scalar field, the scalar field mass is
extraordinarily small at 3 ×× 10  eV. Our scalar field density parameter precisely
replaces the ΛCDM dark matter density parameter in the Friedmann equations,
resulting in essentially identical data fits, and its present value matches the Planck
value. Thus the wave is fundamentally a dark matter wave. We therefore posit that this
scalar field manifests itself as the dark matter.

Export citation and abstract

1. INTRODUCTION
In an earlier paper (Ringermacher & Mead 2014) we developed an approach to plot
scale factor against lookback time in a model-independent way for the first time and
performed a preliminary analysis to locate the transition time (or redshift) of the
universe. We pointed out that transition-z values found in the literature span a wide
range from z = 0.45 to z = 0.78. The ΛCDM prediction is approximately 0.77. In that
paper we performed considerable smoothing of the data and found no absolute
minimum out to at least z = 0.6 at which point the data was quite "noisy." We did,
however, find apparent oscillations, but ignored and smoothed them out since one can
in fact create oscillations by filtering wide-band noise, depending on the filter cut-off
frequency. In the present work we analyze the apparent oscillations more carefully. We
emphasize that the main purpose of this paper is to describe the oscillations. The
model we develop to support our observations is secondary, simple, and, at present,
incomplete in that it describes only the dominant frequency. Its purpose is to

−1 −1

BibTeX RIS

OBSERVATION OF DISCRETE OSCILLATIONS IN A MODEL-... https://iopscience.iop.org/article/10.1088/0004-6256/149/4/137?fbcl...

2 of 23 1/3/20, 6:53 AM



demonstrate that such oscillations can propagate into the present and to provide a
platform to estimate the mass of the scalar field by matching the oscillation frequency
to the observation. It is convenient to work in frequency units when analyzing the
oscillations. We shall define 1 cycle over 1 Hubble time as 1 Hubble-Hertz or 1 HHz. In
the analysis as well as in the model time is normalized to the Hubble time.

For our analyses, we perform an FFT and autocorrelation in addition to multiple
smoothing algorithms and statistical analyses on both the a(t) data and its first
derivative. An oscillation at a dominant frequency of approximately 7 cycles over one
Hubble time, which we term 7 Hubble-Hertz ( HHz) is revealed as are a second and
third harmonic from the FFT. Since the oscillations are seen in the scale factor, one
might expect they should also be seen in the distance modulus data. Analysis, based on
our model, shows that the scale factor plot has a signal-to-noise ratio (S/N) advantage
of a factor of 3–5 over the Hubble diagram for z . Also the signal is a complicated shape
and not periodic when plotted against redshift. These facts would reduce the likelihood
of an observation in the Hubble diagram. However, since our observed amplitudes
were 2–3 times greater than our model, it may be possible to extract this signal with
care from the modulus plot.

We also present a scalar field model that supports the presence of such discrete
oscillations into the present epoch. Many authors have tried similar models to attempt
to explain dark energy or dark matter (Ratra & Peebles 1988; Khoury et al. 2001; Gao et
al. 2010; Suárez et al. 2013) but had no experimental foundation upon which to build.
We demonstrate that a simple damped harmonic oscillator scalar field coupled to the
Friedmann equations describes the dominant oscillation and produces a near-perfect
scale factor fit to ΛCDM.

This paper is organized as follows. The data analysis is first described. Smoothing
algorithms are used on the scale factor versus lookback time data set and its first
derivative. Next, an FFT is performed on the same data. A simulation of the oscillations
with the measured amplitude and damping along with a realistic noise distribution is
carried out and a statistical estimate of the likelihood that the signal is real is performed
using FFTs in blind testing. The scale factor data is then analyzed a final time in
Section 4 with improved processing, then using autocorrelation and discrete Fourier
analysis. This resulted in a higher S/N at the fundamental frequency. Finally the scalar
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field model is presented. We add that the model does more than describe the
oscillations—the matter density deriving from the scalar field is precisely equivalent to
the ΛCDM dark matter density in the Friedmann equations by substituting for it and
encompasses the same perfect fit to the SNe data. It successfully substitutes for dark
matter over the measured range of SNe. This will be detailed in the Model section of
the paper.

2. SCALE FACTOR DATA SMOOTHING ANALYSIS

2.1. Differences Between the Hubble Diagram and a Model-independent Scale
Factor Plot
We employ the same data set as was used in a previous paper (Ringermacher & Mead
2014). This is a combination of SNe data of Conley et al. (2011) and Riess et al. (2004)
together with radio galaxy data of Daly & Djorgovski (2004) out to z = 1.8. The a(t)
plot is obtained by initially calculating a(t)directly from the redshift and evaluating the
corresponding lookback time as described in the paper. Lookback time is then sorted
and a(t) is plotted for each time. This effectively transfers any lookback time noise into
a(t). Although the entire set was analyzed, most of the oscillation was observed in the
Conley data alone and could be analyzed as such. We note that our scale factor plot is a
function of time and thus an analysis can reveal discrete frequencies. The standard
Hubble diagram of distance modulus against redshift would present oscillations as a
z-dependent complicated spectrum. Our data analysis simulation indicates that the
scale factor plot analysis also has an S/N advantage of as much as a factor of three to
five for  compared to that found directly from a Hubble diagram. The advantages
subside for z . Thus with the availability of more high-z SNe and knowing what to look
for, it may be possible to see the oscillation directly from the Hubble diagram. We
describe the expected signal shape and amplitude in the model discussion.

2.2. Raw Data Smoothing
Two types of smoothing were used—median smoothing and Gaussian smoothing.
Since the a(t) data is slowly varying with time, a derivative of the smoothed, unbinned,
data was first attempted to flatten the curve permitting later binning of the data. This
would reveal any inflection points as a minimum in the derivative. Median smoothing
was chosen to process the raw, unbinned, a(t) data prior to differentiation. There are
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527 unequally spaced points in the data set. The point density is very high at low z and
sparse at high z. We used a running 49-point window resulting in a filter which, over
the region of oscillation, has an effective 7 HHz, 3 dB cutoff. We also tried a running
17-point window (15 HHz cutoff) and found essentially the same final results. The 7
HHz signal was not caused by filtering effects or by binning effects as was vindicated by
our simulation and more advanced analysis below. It also was not caused by joining
data sets since most of the signal was observed in the Conley set alone. After
smoothing we differentiated the data. The choice of smoothing and differentiation
techniques is dominated by the need to extract a signal whose width is on the order of
10% or less of the time base. Thus we do not use the very wide (20–30%) time window
smoothing algorithms sometimes seen in redshift data analysis.

2.3. Smoothed Data Derivative
A simple centered 3-point (2 time bins) derivative would introduce a great deal of
noise. Instead we chose a wide-baseline 3-point derivative sampling a 10-bin span or
greater. This type of differentiation is the numerical analog of magnetic field
modulation typically used in Nuclear Magnetic Resonance wide-line spectral analysis
(Bozarth & Chapin 1942). It is capable of enhancing broad, weak signals when the
modulation width (time window width here) is equal to the line width (oscillation
period here). The signal must be "line-like" (here a damped oscillation). For example, a
10-bin derivative will improve the S/N by a factor of approximately 5 over a 2-bin
derivative. This is further described in Appendix A.

Figure 1 shows the plot of unequally spaced scale factor versus lookback time data, the
smoothed data, a 30-bin derivative of the smoothed data and the final, Gaussian-
smoothed oscillations. The final Gaussian smoothing uses a time window of 0.08 (8%
of the normalized timescale). Our simulation shows that this series of filters has an
effective cutoff in the neighborhood of 7 HHz. The frequency measured here, based on
an average 2 cycle period of 0.155 Hubble times, is 6.5 ± 0.6 HHz. A best match of the
oscillations in Figure1 to the scalar model was found at a 6.95 HHz frequency. Early
time points between 0.3 and 0.37 were distorted by the smoothing and were discarded.
End point data very near z = 0 was also affected by the smoothing and is not reliable.
The relative minima were found at normalized lookback times t = 0.78, 0.63, and 0.47.
The relative maxima were found at normalized lookback times t = 0.87, 0.71, and 0.56.
In turn, these times correspond respectively to red-shifts of z = 0.26, 0.51, and 0.9 for
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the minima and z = 0.14, 0.37, and 0.66 for the maxima. In addition to the four
processed sets we display the time derivative,  of the ΛCDM scale factor (rising curve)
for WMAP Omegas. We note that the oscillations are centered directly on this curve.
We have multiplied the derivative by a factor of 0.2 to enable a common display on the
plot hence the slope 0.2 as t approaches 1 rather than slope 1 as seen for the scale factor.
Here the signal amplitude after smoothing is approximately equal to the rms noise, 0.1.
Section 4.3 will describe an improved analysis.

2.4. Comment on Unequally Spaced Redshift Data
Since the redshift data are unequally spaced, but putatively random, so too is the scale
factor data. Fast Fourier Transform analysis requires equally spaced data, so for that
analysis the data were equal-time binned. We have shown that our redshift data can be
divided into three groups of spacings; nearby tightly spaced redshifts , midrange , and
high sparse redshifts . The midrange grouping comprises 360 points with a mean
spacing  of and standard deviation . How random is this? We can ascertain that by
generating an artificial set of 360 randomly spaced points between redshifts 0.2–1 and
examining those statistics. We find for that set,  and . Thus we can say with confidence
that the midrange real redshift data set appears to be randomly spaced and dense. The
256-point binning was, on average, two points per bin—particularly true for the "mid-
region" mentioned above. This would not significantly distort frequency information
since the bin time-width is very much less than the periods we found. A Lomb–Scargle
(Lomb 1976 and Scargle 1982) spectral analysis, appropriate for unequally spaced data,
would be an additional method that could be used. We do not use this here, but make
available our scale factor versus lookback time data set (Combined Data 2014) for any
future analyses—particularly with new SNe data as they are made public. The
unequally spaced data points can be plotted against their equally spaced point indices.
This produces a line of constant average slope with effective random noise. That is the
noise that would be introduced into an analysis otherwise requiring equal data spacing.

FFiigguurree  11.. Plot of scale factor SNe data, smoothed data, derivative of smoothed
data, smoothed derivative, and  for  Omegas.
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3. SCALE FACTOR FFT DATA ANALYSIS
An FFT analysis was performed on the data to confirm the presence of discrete
frequencies. This was done in several different ways. In all cases the data required
equal-time binning. We chose either 256 or 512 equally spaced time bins. Any unfilled
bins were randomly extrapolated between bounds. We performed FFTs on binned raw
a(t) data, smoothed-then binned a(t) data, and the first derivative of the data. We
describe the results below.

3.1. FFT of 256 Equal-time Binned Data After Smoothing
The raw a(t) data of Figure 1 was first smoothed as is with unequal times. 49-point
median smoothing was performed on the a(t) curve as before. It was determined in the
simulation that the 49-point smoothing performed on the 527 unevenly spaced points
was equivalent to a 27 point smoothing over the region of interest in the 256-binned
set. The data was then sorted into 256 bins from t = 0.3 (the earliest time data) to t = 1.
This necessitated renormalizing the FFT frequency scale. A third-order polynomial
was fitted to the smoothed data and subtracted from it to flatten the curve, removing
any DC component, and permitting a clean analysis of the residuals. Any noisy data
prior to t = 0.4 was removed and the flattened curve zero-padded to t = 0.3. Inclusion
of excessively noisy data can overwhelm the signals. An FFT was then performed on
256 points between t = 0.3 and t = 1. Results are shown in Figures 2 and 3.

FFiigguurree  22.. Plot of 49 point smoothed scale factor data (left) with 256 equal-time
bins from t = 0.3 to t = 1. Noisy data is seen at early times. Plot of flattened and
padded scale factor data (right) with 256 equal-time bins from t = 0.3 to t = 1.
The noisy data has been discarded.
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The FFT confirms the dominant oscillation between 6.5–7.0 HHz and finds, in
addition, second and third harmonics. The harmonics would be reduced in amplitude
since the raw unequal time data was smoothed with a 49 point median filter
—equivalent on average to having approximately a 6 HHz, 3 dB, cutoff. These
harmonics appear in nearly all our analyses, so we report them. The fact that these
signals appear in the equal-time binned data means the unequally spaced redshifts
were not their source.

3.2. FFT of 512 Equal-time Binned Data After Smoothing
We repeated the 256-bin procedure above but binned the raw, smoothed, data to 512
points instead to obtain the FFT shown in Figure 4.

3.3. FFT of Smoothed Data After Equal-time Binning
We next tried first binning the unsmoothed flattened raw data into 256 equally spaced
time bins (Figure 5, left), followed by smoothing (Figure 5, right). This had a
significantly different noise spectrum since the binning itself smoothes the data—in
ways that can sometimes be undesirable. This occurs because the sparse data is binned
in time slots exceeding the quoted experimental error, thus potentially losing
information. The smoothing window is 0.02 with a 3 dB cutoff at 18 HHz. Figure 6
shows the FFT of the data of Figure 5. Frequencies at 6.5, 13, and 19 HHz are detected.

FFiigguurree  33.. FFT of Figure 2 data with frequency scale in units of HHz.
Frequencies at 6.5, 13, and 20 HHz are prominent.

FFiigguurree  44.. FFT of 512-binned, smoothed, data with properly normalized
frequency scale in units of HHz. Frequencies at 6.5, 13, and 20 HHz are
prominent.
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The signal at 3 HHz is likely due to imperfect flattening.

3.4. FFT of Derivative of Smoothed, Equal-time Binned Data
Figure 7 shows the FFT of the derivative of the data of Figure 2. The data was not first
flattened. Consequently there was a residual DC component in the FFT. Otherwise the
same frequencies as before remain. Recall, this data was smoothed before binning. A
3-point derivative over a running 10-bin baseline was then used. The narrow derivative
window emphasizes the 20 HHz signal and improves the S/N.

4. EXPANDED ANALYSIS
We further analyze the signal by building a signal synthesizer with a waveform
simulating our scalar field model presented in Section 5 and examining the signal with
noise statistics. This section is concluded with an improved analysis approach to

FFiigguurree  55.. Plot of flattened, padded, and binned raw data (left). Gaussian-
smoothed data (right). Smoothing window was 0.02, with an 18 HHz, 3 dB
cutoff.

FFiigguurree  66.. FFT of Figure 5. 6.5, 13, and 19 HHz signals are seen. In addition a 3
HHz signal is seen and may arise from imperfect flattening of the data after
binning.

FFiigguurree  77.. FFT of derivative of Figure 2. Signals at 7, 13, and 20 HHz are seen.
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maximize the 7 HHz signal. This is followed by an autocorrelation analysis that
confirms the presence of the signal at higher S/N.

4.1. Model Waveform
We create a model of the waveform based on our scalar field model for further testing.
This model is good in the range t = 0.2–1.0. We include, at this time, only the
fundamental frequency at approximately  HHz, damped exponentially to match the
decay rate in our scalar field model and amplitude-adjusted to match the observations
at . In our model, the oscillatory component rides effectively on the  solution to the
Friedmann equations. The signal used to model our observation in Figure 8 (right) is
intended to be the "residual" signal after the  has been removed, plotted against
lookback time, and has the form

where

is the model-based lookback time. When this signal is placed onto a z scale,
corresponding to the lookback time, the result is the z-model curve of Figure 9 plotted
against z out to . This is what the waveform residual would look like on a plot of
distance modulus against redshift with the approximate (observed) amplitude.

FFiigguurree  88.. Real noise scatter of flattened SNe data is left. Simulated scatter is
center. Simulated signal is right.

FFiigguurree  99.. Residual oscillation in distance modulus vs. z at 7 HHz to z = 1.5.
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4.2. Statistical Tests From Simulations
The likelihood of seeing a 7 HHz signal from pure noise was simulated. The data noise
scatter from t = 0.3 to t = 1 was approximated as a linearly rising Gaussian normal
distribution about a zero mean with 0.07 variance. This distribution simulated the
flattened data set scatter very closely. The signal used was derived and scaled from the
solution of  from the scalar field model discussed in Section 5. Figure 8 compares the
true and simulated noise scatter of the residuals on a plot of  versus t. Also shown is the
7 HHz scalar model wave signal used for trials. The amplitudes are correct. The
amplitude of the 7 HHz signal used for the trials is about twice that for the model
solution—closer to what was observed. The waveform is described in more detail in
Section 4.

The peak-to-peak noise scatter in the region of interest around  was approximately 0.08
on a scale of 0–1. Gaussian smoothing with a window of 0.08 (same as applied for
Figure 1) was used on noisy data looking like , close to reality. Poisson statistics apply.
First, only noise was introduced with zero signal. 5000 trials were run. A 7 HHz ()
signal appeared 272 times or 5.4% () of the time. The 95% confidence interval for these
trials is 5.4% (). Next a 7 HHz signal was introduced at 1/10 the noise peak amplitude.
1000 trials were run. A 7 HHz signal level at least twice the noise was seen 52.1% of the
time. Thus the likelihood of the dominant signal at 7 HHz being real is approximately
10/1 using this filtering. No simulation we could compose produced harmonics as seen
in the real data, including padding trials. The harmonics were generally lower
amplitude except those of Figure 7 where a 10-bin derivative was used which
emphasizes the higher frequencies.

4.3. Scale Factor Autocorrelation Analysis
We analyze the "flattened" raw, unbinned, data of Figure 8 (left) using Gaussian
smoothing. The unbinned data will introduce some random noise as described in
Section 2.4 but may show stronger results. The earlier analyses smoothed the  data
before flattening. We use a 0.03 smoothing time window followed by a 30-bin
derivative on the smoothed data to maximize the 7 HHz component. Once again, only
the data for  (527 points) is analyzed to exclude early-time sparse-data noise. We use
the standard definition of the auto-correlation index, , where  and  is the mean of the
set of N values:
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Figure 10 shows the results of the autocorrelation and Discrete Fourier Transform
(DFT) performed on this data. Figure 10 (left) is the auto correlation of the data set.
The DFT (Figure 10, right) shows a strong peak near 7 HHz resulting from the higher
S/N, optimized from peaking the autocorrelation analysis. The time region where this
fundamental frequency occurs is dense, truly random-time data and, on average, is
expected to produce the same frequency as the earlier FFTs. The autocorrelation
function defined from Equation (3) is normalized so as not to naturally generate a
decaying function. For example, a unit amplitude sine wave input would output the
same function. Thus, Figure 10 (left) is essentially a reproduction of Figure 8 (right)
and strongly confirms the signal. If a periodic, single frequency, signal with an S/N of at
least 1 is passed through an autocorrelation it will be recognized and essentially
reproduced with an index starting at 0.5 and oscillating between 0.5 and −0.5. A S/N of
3 to 4 generates an autocorrelation response similar to that in Figure 10. A noise-free
signal will oscillate at greater amplitude. Pure noise results in the index randomly
varying rapidly between 0.1 and −0.1. However, an autocorrelation will respond in the
same way to a coherent signal or an apparently coherent signal filtered from pure noise.
So it is essentially an indicator of a coherent signal when using filtering and is not
definitive evidence in and of itself that the observed signal is real. By maximizing the
autocorrelation we optimized the S/N for the 7 HHz component. This required a 32-
bin derivative followed by 0.06 smoothing. We evaluate, directly from the data, an
average S/N of approximately 3 for our scale factor oscillation between t = 0.55–0.80.

In Figure 11 we show a final comparison of the observed 7 HHz signal  amplitude to
the scalar field model  amplitude from Section 5 with error estimates. The present
model fits frequency quite well but inadequately describes amplitude. Also, the

FFiigguurree  1100.. Autocorrelation of scale factor derivative data, , (left) and discrete
Fourier transform  (right). The autocorrelation k axis corresponds to lookback
times 0.4 () to 1().
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noticeable deviation in the oscillation approaching t = 0.4 is due to the significantly
higher noise arising from the redshift sparseness.

5. A COSMOLOGICAL SCALAR FIELD MODEL OF DARK MATTER
Ever since Guth introduced inflationary cosmology in 1981 (Guth 1981), relating it to
postulated scalar fields describing phase transitions, other authors (Linde 1982, 1983,
2014; Bardeen et al. 1983; Steinhardt et al. 1998; Khoury et al. 2001) advancing his
proposal toward "new inflation," "chaotic inflation," and entirely new concepts have
developed various scalar field cosmological models—all focused on the early
inflationary transitions. A few authors considered the possibility of inflaton-like fields
permeating the recent epoch. The first papers addressing this possibility appear to have
been by Peebles & Ratra (Peebles & Ratra 1988; Ratra & Peebles 1988). They focused
on utilizing scalar fields to represent essentially today's dark energy. Their work (Ratra
& Peebles 1988) foreshadows the present model. It recognizes that the scalar field
particle mass at recent cosmological scales must be exceedingly small and even presents
a calculation predicting a mass of the order of  eV in the present epochconsistent with
the scale of our model.

We basically combine Linde's chaotic inflation, using a simple quadratic harmonic
oscillator potential, with Peebles' approach—moving the scalar field, , into the present
era, but applying it to dark matter instead of dark energy. The dark energy then appears
simply as a constant density. This, however, is not the first paper referring to scalar field
dark matter. Matos, together with many co-authors, has pressed this concept for some
time (Suárez et al. 2013). Their work describes "fluctuations" in the scalar dark matter
field as a function of the scale factor, . They do not suggest the possibility that the scale
factor itself oscillates—as it should through the coupling with the scalar field. Though

FFiigguurree  1111.. Comparison of scalar field model of  with observed 7 HHz data.
The model signal seen here is the full scalar  signal of Figure 12 with 
subtracted.
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their scalar field mass is of the order of 10  eV they show that their scalar field
replicates  at early times and thus is capable of describing dark matter.

We describe oscillations in time directly with our model and match the frequency
(mass of the scalar field) with the observed data. Our model is tightly constrained and
effectively only one parameter, the frequency, controls the matching fit. We demand 
and  by definition. The choice of the initial scalar field amplitude,  fixes both of these
conditions simultaneously once the appropriate density parameters are inserted. We
show (Appendix B) that in the coupled Equations , leaving only the frequency to match
the observed oscillations. There is apparently no phase adjustment. The frequency
either matches or does not. We do in fact achieve good phase matching at the selected
frequency. However, we have no control over amplitude once  is adjusted to set the
scale factor conditions. We find that our observed amplitude is approximately three
times the model value and we do not attempt to derive the harmonic signalsso the
overall fit is incomplete. Further evaluation is outside the scope of this presentation.

5.1. Scalar Field Model
Is there a simple model which can account for the oscillations in  revealed in the last
few sections? Since we are looking for an oscillating solution, it makes sense to couple
the Einstein equations with an oscillating scalar field  whose energy content can drive
the evolution of . This kind of coupling is routine in models of inflation (Linde 2014)
where one is interested in the earliest evolution times with consequent density
fluctuations. Here we will take the model seriously for all post-inflation times including
the recent epoch (Ratra & Peebles 1988). Our Lagrangian is chosen to be that of a
simple harmonic oscillator,

We will see that this simple model contains the main features we wish to include. We
follow well-known standard treatments (Ratra & Peebles 1988; Coles & Lucchin 2002;
Linde 2014). Pressure and densities are,

−24
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The coupled scalar field-Friedmann equations are,

In Equation (7),  All other  are also scaled by the critical density for flat space, . The
subscript "" refers to dark energy, "b" is baryonic matter, "d" is dark matter and "r" is
radiation (including neutrinos). In the above,  is scaled such that  and . Since both
Planck and ΛCDM data suggest that space is flat, we must guarantee that  at  (one
Hubble time) as implied by (7). In all that follows we set , that is, we omit dark matter.
Our -field energy,  (from (6)), will take its place. Otherwise, we adopt the Planck values
of the constants: , ,  The value of (the energy in  now) will be determined by solving
the coupled differential equations. What must be reproduced by these remaining
constants are the values of  and the observed frequency of oscillations in .

We take as the initial condition for the cosmic evolution factor to be . To be determined
by best fitting to the data are the remaining constants of m (angular frequency),  and .
However, detailed, small-time dominance analysis of the coupled Equations (7) and (8)
shows that the only value of  consistent with the value  is (Appendix B). In view of
these considerations, there remain two free parameters to fix: m and .

6. RESULTS OF THE NUMERICAL MODEL
After numerically solving (Endnote) Equations (7) and (8) we find  and  as close to the
optimal values required by the foregoing conditions. The value of  is very close to the
Planck value of the dark matter density. There are now no free parameters.

In Figure 12 we show a plot of  and  versus the lookback time. As we show in a
moment, the fit of  versus t is excellent over the full range of data. It is difficult to see
the oscillations in  on the scale of the plot, so the derivative  is also shown clearly
revealing the oscillations which have a frequency of twice that of the scalar field:  HHz.
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The fit to the actual  versus lookback time against the full set of supernova data is
shown in Figure 13. As can be seen the Scalar Field plot (solid red line) oscillates about
the WMAP-ΛCDM model. Nonetheless, the agreement with the data is excellent. There
is significant deviation between the two models only at the early times, 

The scalar field and its energy oscillate at  HHz. We plot the energy in the scalar field in
Figure 14 which has the Planck dark matter value of  at the present time. The energy is
quite large, but finite at . Superposed on this graph is that of a curve with  falloff. It was
pointed out in a previous publication (Ringermacher & Mead 2014) that a satisfactory
evolutionary model of the universe could be constructed by replacing dark matter by
an energy density which fell off as . This "toy" model virtually duplicates the standard
ΛCDM model. Our current scalar field model seems to have this asymptotic feature;
the deviation from this behavior occurs only from times less than .

Related to the -field energy is its equation of state parameter, , defined as the ratio of
the pressure of the dark matter field to its energy density . Figure 15 shows this

FFiigguurree  1122.. Plot of  and  against lookback time to display the oscillations.

FFiigguurree  1133.. Comparison of the ΛCDM a(t) model with the scalar field a(t)
model together with the SNe data. R-squared goodness of fit is 0.98.

FFiigguurree  1144.. Energy density of the scalar field (wiggly line) displaying a 
dependence on average. 
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parameter as a function of lookback time.

The initial value of  is exactly –1; the -field energy acts initially as dark energy,
enhancing the early expansion. After an initial increase,  oscillates between –1, where
the rate of growth of the universe is enhanced, and +1 where the rate of growth is
slowed; there the field acts as a kind of "anti-dark energy." The mean is  which is zero
pressure "dust" as in standard cosmology. The current value is .

Also of interest to cosmologists is  the deceleration parameter defined from,

A plot of  versus t is shown in Figure 16. q begins at the value +1, increases then
oscillates rapidly with a decaying amplitude which is asymptotic to ; it becomes
virtually that value at around three Hubble times indicating a continued exponential
growth of the universe. More important is the predicted value at the current time of 
which is  which is very nearly the accepted value with Planck parameters.

7. CONCLUSIONS
We have analyzed a model-independent plot of scale factor versus lookback time for
standard candle data and found discrete, damped, oscillations at 6.5 ± 0.5 HHz (~7
cycles in 13.8 Gy) and the second and third harmonics at 13 and 20 HHz. As was
described, the standard candle data was compiled from three sets. The signals appeared
mostly in the Conley set. Thus the data junction was not the source of the signal. The

FFiigguurree  1155.. Equation of state parameter for the scalar field vs. lookback time.

FFiigguurree  1166.. Deceleration parameter as a function of lookback time.
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data were analyzed using four methods; smoothing, Fourier analysis, statistical noise
analysis, and autocorrelation. Smoothing alone revealed the 7 HHz signal but such an
analysis is not definitive. The Fourier analysis revealed the same 7 HHz signal along
with its second and third harmonics prominently. Furthermore, the unequally spaced
data were binned in equal time spacings for the FFT analysis. This eliminates unequal
spacing as the cause of the signals. Statistical analysis revealed approximately a 5%
probability that a 7 HHz signal within the smoothing bandwidth could be generated
from normal random noise alone. We could not reproduce the 7 HHz signal together
with harmonics as an artifact of any particular analysis. Thus it is unlikely that the
three signals could be simultaneously generated by noise alone. Finally an
autocorrelation was performed on the  data. This showed a very strong response
consistent with the insertion of a real signal as tested by trials with varying S/N.
Inserting simulated random noise data always produced a noise output. So this is a very
powerful test. It remains to reproduce the present results using an independent SNe
data set.

Also, it is noteworthy that, from Figure (13), the ΛCDM model was a best fit for
WMAP data, while our scalar oscillations model was a best fit for Planck data. This is
likely not an accident and can be interpreted to mean the small remaining oscillation
mitigates the tension between the WMAP and Planck data which has been of recent
concern since Planck has three times higher resolution than WMAP.

We also constructed a simple harmonic oscillator scalar field model to account for the
oscillations in the scale factor into the present epoch. The resultant oscillations
matched the observations very well, even though the model was tightly constrained
with no phase adjustment—only frequency. The amplitude adjustment was fixed by the
requirement of normalization of  and . Since the scalar field was coupled to the
Friedmann equations, we showed that the oscillations followed, nearly exactly, the
ΛCDM  curve to the present time while generating all the Planck . Moreover, we found
that  and that the deceleration parameter is , both values of which are close to the
ΛCDM values. This was accomplished by substituting  in place of  in the model. Thus
we conclude that the scalar field manifests itself as the dark matter.

If the scalar field is a quantum field, then the 7 HHz frequency and its cosmological
wavelength correspond to a scalar field particle mass of  eV, a number mentioned by
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previous authors. The model leaves open some questions. It does not account for the
harmonics, though an extension to coupled oscillators is possible. The amplitude
produced is also a factor of three too small. Further work on the model is out of the
present scope of this paper at this time.

It was mentioned in Section 6 that our model significantly deviates from ΛCDM only
in early times,  At  an intense deceleration occurred (Figure 16) that caused the
expansion rate (Figure 12) to fall well below the standard model. This could account for
the observed surprisingly early galaxy formation that followed. A test of the present
observations might be the appearance of these time-periodic components in the large-
scale structure of the universe.

We thank Michael Vera for suggesting the use of Fourier analysis. We also thank Judith
Keating Ringermacher for her assistance in programming the data binning in Excel
and other data analysis. All computations have been verified with Mathematica ,
Maple , and Mathcad .

APPENDIX A: WIDE BASELINE DIFFERENTIATION
We define a 3 point numerical derivative of a function  centered at point  as:

This derivative spans 2 time bins. We define a wide-baseline 3 point derivative
similarly:

This derivative spans n time bins where n is an even number. Assume the function
consists of signal plus noise, . Then,

It is easy to show that the result obtained from taking a wide-baseline 3-point
derivative of a function (1st term of (A3)) is not significantly different in amplitude
from taking a normal centered 3-point derivative until the baseline gets extremely
wide. The difference lies in the noise derivative (2nd term of (A3)). Thus the first term

TM

TM

TM TM
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of (A3) is essentially the same as the signal derivative component of (A1). But the noise
differential is the same for a 2-bin derivative or an n-bin derivative since it is merely the
random noise summed at two points. So the numerator of the second term of (A3) is
identical to the noise numerator of (A1). But the noise derivative denominator is now
n/2 greater for (A3). This results in an n/2 noise reduction. Thus wide baseline
differentiation acts as a noise filter with dramatic noise reduction. Figure A1 shows an
example of a 12-bin derivative applied to a synthesized function with peak noise
approximately equal to its amplitude (Figure A1, left). The 2-bin derivative and 12-bin
derivative have the same amplitude scales. The 12-bin derivative is, in effect, like taking
a derivative of a noisy signal while not increasing its noise. This method achieves
optimum S/N when the baseline width is on the order of the width of the function
being differentiated. Thus one must estimate the width in advance to take advantage of
this technique.

APPENDIX B: SOLUTION OF THE MODEL FOR SHORT TIMES
Equations (7) and (8) may be approximately solved for sufficiently short times. In (7),
since  at , the radiation term should dominate for short times even in the presence of
the -energy term which remains finite at  Thus,  whose solution is  for some constant,
A. Equation (8) for short times then reads

This is a form of Bessel's equation with regular solution (Gradsteyn & Ryzhik 1980)

for some constant B. The derivative of this function vanishes at t = 0; hence our initial
condition that .

FFiigguurree  AA11.. Signal plus noise, left; 2-bin derivative, center; 12-bin derivative
same scale right.
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